Refine Your Search

Topic

Author

Search Results

Technical Paper

Simulation-Based Cold-Start Control Strategy for a Diesel Engine with Common Rail Fuel System at Different Ambient Temperatures

2007-04-16
2007-01-0933
A new tool has been used to arrive at appropriate split injection strategy for reducing the cranking period during the cold start of a multi-cylinder engine at decreasing ambient temperatures. The concept behind this tool is that the combination of different injection parameters that produce the highest IMEP should be able to improve the cold startability of the diesel engine. In this work the following injection parameters were considered: 1) injection timing, 2) split injection fraction, 3) dwell time and 4) total fuel mass injected per cycle. A commercial engine cyclic simulation code has been modified for diesel engine cycle simulation at lower ambient temperatures. The code was used to develop IMEP control maps. The maps were used to identify the parameters that would give the best IMEP. The strategies that have been identified have been validated experimentally in a multi-cylinder diesel engine equipped with a common rail fuel injection system.
Technical Paper

Simultaneous In-Cylinder Surface Temperature Measurements with Thermocouple, Laser-induced Phosphorescence, and Dual Wavelength Infrared Diagnostic Techniques in an Optical Engine

2015-04-14
2015-01-1658
As engine efficiency targets continue to rise, additional improvements must consider reduction of heat transfer losses. The development of advanced heat transfer models and realistic boundary conditions for simulation based engine design both require accurate in-cylinder wall temperature measurements. A novel dual wavelength infrared diagnostic has been developed to measure in-cylinder surface temperatures with high temporal resolution. The diagnostic has the capability to measure low amplitude, high frequency temperature variations, such as those occurring during the gas exchange process. The dual wavelength ratio method has the benefit of correcting for background scattering reflections and the emission from the optical window itself. The assumption that background effects are relatively constant during an engine cycle is shown to be valid over a range of intake conditions during motoring.
Journal Article

The Combined Effect of HCHO and C2H4 Addition on Combustion in an Optically Accessible Diesel Engine Fueled with JP-8

2011-04-12
2011-01-1392
Misfiring or partial combustion during diesel engine operation results in the production of partial oxidation products such as ethylene (C₂H₄), carbon monoxide and aldehydes, in particular formaldehyde (HCHO). These compounds remain in the cylinder as residual gases to participate in the following engine cycle. Carbon monoxide and formaldehyde have been shown to exhibit a dual nature, retarding ignition in one temperature regime, yet decreasing ignition delay periods of hydrocarbon mixtures as temperatures exceed 1000°K. Largely unknown is the synergistic effects of such species. In this work, varying amounts of C₂H₄ and HCHO are added to the intake air of a naturally aspirated optical diesel engine and their combined effect on autoignition and subsequent combustion is examined. To observe the effect of these dopants on the low-temperature heat release (LTHR), ultraviolet chemiluminescent images are recorded using intensified CCD cameras.
Journal Article

The Effect of HCHO Addition on Combustion in an Optically Accessible Diesel Engine Fueled with JP-8

2010-10-25
2010-01-2136
Under the borderline autoignition conditions experienced during cold-starting of diesel engines, the amount and composition of residual gases may play a deterministic role. Among the intermediate species produced by misfiring and partially firing cycles, formaldehyde (HCHO) is produced in significant enough amounts and is sufficiently stable to persist through the exhaust and intake strokes to kinetically affect autoignition of the following engine cycle. In this work, the effect of HCHO addition at various phases of autoignition of n-heptane-air mixtures is kinetically modeled. Results show that HCHO has a retarding effect on the earliest low-temperature heat release (LTHR) phase, largely by competition for hydroxyl (OH) radicals which inhibits fuel decomposition. Conversely, post-LTHR, the presence of HCHO accelerates the occurrence of high-temperature ignition.
Technical Paper

Thermal Barrier Coatings for Monolithic Ceramic Low Heat Rejection Diesel Engine Components

2000-03-06
2000-01-1236
The future of maintaining a superior mobile military ground vehicle fleet rests in high power density propulsion systems. As the U.S. Government desires to convert its powerplant base to heavy fuel operation, there arises the opportunity to incorporate new advanced materials into these heavy fuel engines. These newer materials serve the purpose of decreasing powerplant weight and develop new component designs to take advantage of improved strength and temperature capability of those materials. In addition, the military continues the effort for a non-watercooled Low Heat Rejection (LHR) diesel engine. This type of engine demands the use of ceramic and advanced ceramic composite material hardware. Furthermore, today's higher pressure fuel injection systems, coupled with reduced air/fuel ratio as a means of increasing horsepower to size and weight, will require thermal protection or change in material specification for many of the engine's components.
Technical Paper

Thin Thermal Barrier Coatings for Engines

1989-02-01
890143
Contrary to the thick thermal barrier coating approach used in adiabatic diesel engines, the authors have investigated the merits of thin coatings. Transient heat transfer analysis indicates that the temperature swings experienced at combustion chamber surfaces depend primarily on material thermophysical properties, i.e., conductivity, density, and specific heat. Thus, cyclic temperature swings should be alike whether thick or thin (less than 0.25 mm) coatings are applied, Furthermore, thin coatings would lead to lower mean component temperatures and would be easier to apply than thick coatings. The thinly-coated engine concept offers several advantages including improved volumetric efficiency, lower cylinder liner wall temperatures, improved piston-liner tribological behavior, and improved erosion-corrosion resistance and thus greater component durability.
Journal Article

Transient Fluid Flow and Heat Transfer in the EGR Cooler

2008-04-14
2008-01-0956
EGR is a proven technology used to reduce NOx formation in both compression and spark ignition engines by reducing the combustion temperature. In order to further increase its efficiency the recirculated gases are subjected to cooling. However, this leads to a higher load on the cooling system of the engine, thus requiring a larger radiator. In the case of turbocharged engines the large variations of the pressures, especially in the exhaust manifold, produce a highly pulsating EGR flow leading to non-steady-state heat transfer in the cooler. The current research presents a method of determining the pulsating flow field and the instantaneous heat transfer in the EGR heat exchanger. The processes are simulated using the CFD code FIRE (AVL) and the results are subjected to validation by comparison with the experimental data obtained on a 2.5 liter, four cylinder, common rail and turbocharged diesel engine.
Technical Paper

Tribological Systems for High Temperature Diesel Engines

1987-02-01
870157
The U.S. Army Tank-Automotive Command is developing a future high power, low heat rejection military diesel engine. Performance requirements for the engine result in a predicted cylinder wall temperature of 560°C at the top piston ring reversal location. Thermal stresses imposed on the lubricant will therefore be unusually severe. Midwest Research Institute is developing the tribological system for this engine. A new general concept for high temperature diesel engine lubrication has been formulated. Our concept includes advanced synthetic liquid lubricants, solid lubricant additives, and self-lubricating materials. The lubricants, additives, and materials that have been selected for initial laboratory and engine evaluations of the concept are reported here.
Technical Paper

White Smoke Emissions Under Cold Starting of Diesel Engines

1996-02-01
960249
More stringent regulations have been enforced over the past few years on diesel exhaust emissions. White smoke emission, a characteristic of diesel engines during cold starting, needs to be controlled in order to meet these regulations. This study investigates the sources and constituents of white smoke. The effects of fuel properties, design and operating parameters on the formation and emissions of white smoke are discussed. A new technique is developed to measure the real time gaseous hydrocarbons (HC) as well as the solid and liquid particulates. Experiments were conducted on a single cylinder direct injection diesel engine in a cold room. The gaseous HC emissions are measured using a high frequency response flame ionization detector. The liquid and solid particulates are collected on a paper filter placed upstream of the sampling line of the FID and their masses are determined.
Technical Paper

“OPERAS” In Advanced Diesel Engines for Commercial and Military Applications

2006-04-03
2006-01-0927
Advanced diesel engines developed for the commercial market need to be adapted to the military requirements by OPERAS (Optimizing the injection pressure P, the Exhaust gas recirculation E, injection events Retard and/or Advance and the swirl ratio S). The different after treatment devices, already used or expected to be applied to diesel engines, require feed gases of appropriate properties for their efficient operation. To produce these gases some OPERAS are needed to control the diesel combustion process. Since military vehicles do not need the after treatment devices, the OPERAS of the commercial engines should be modified to meet the military requirements for high power density, better fuel economy, reduction of parasitic losses caused by the cooled EGR system, and reduction of invisible black and white smoke in the field.
X